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Experimental investigations on the origin and evolution of structure in circular shear 
flows, made under different conditions by different groups of authors, reveal a 
number of common regularities. (i) When the difference ASZ between the angular 
velocities of the centre and the periphery is smaller than a certain critical value 
(A!&, the flow is axisymmetric. (ii) When ASZ = (AD),, a pattern appears consisting 
of mc vortices. (iii) With a subsequent adiabatic growth of ASZ (at a certain 
(ASZ)& > (AQ),), transition to a pattern with mc- 1 vortices occurs, but a pattern 
with m,+ 1 vortices never arises (although in terms of linear theory the modes 
m, - 1 and mc + 1 are,equivalent). Subsequent growth of ASZ leads to the transition 
(mc- 1) + (mc-2) ,  etc. (iv) As ASZ decreases, a cascade of inverse transitions of the 
form m- 1 + m up to m = mc occurs, and the transition m- 1 + m proceeds a t  a 
smaller value of As1 compared with the transition m + m - 1, i.e. hysteresis occurs. 

This paper offers a weakly nonlinear theory which makes it possible to describe the 
change of the order of symmetry of the wave pattern (number of vortices) with a 
change of ASZ and to ascertain conditions under which the above regularities occur. 
Some particular examples of the calculation of several models of shear flows are 
given, and it is shown that direct transitions (m + m- 1 )  can be described in terms of 
a weakly nonlinear theory only for flows with a sufficiently large curvature of the 
shear layer, i.e. when D = L/R = O( 1 ) ,  where L is the width of the shear layer, and 
R is its radius, and at not too large m (m, = 4,5).  If D 4 1, a description of direct 
transitions requires a strongly nonlinear theory and is beyond the scope of this paper. 
Inverse transitions (m- 1 +m, m < m,) admit a weakly nonlinear treatment at 
any D .  

1. Introduction 
To date, extensive experimental material has been accumulated on the formation 

and evolution of large-scale structure in circular shear flows of a thin layer of liquid 
or gas. Investigations have been made under different physical conditions on quite 
different devices. Studies have been made of flows both under a rigid lid (for example, 
Niino & Misawa 1984; Rabaud & Couder 1983; Chomaz et al. 1988) and with a free 
surface (Nezlin et al. 1990 ; Nezlin & Snezhkin 1990 ; Dolzhanskii, Krymov & Manin 
1990). A shear flow (differential rotation) of the medium was usually created 
mechanically, through the rotation with different angular velocities of either (i) the 
central part (0 < r < R )  and the periphery ( r  > R )  of the bottom and of the lid, if any 
(for example, Niino & Misawa 1984; Rabaud & Couder 1983; Chomaz et al. 1988; 
Nezlin et al. 1990) or (ii) of the annular region (R, < r < R,) and of the remaining part 
of the bottom (for example, Nezlin et al. 1990). However, in some experiments the 
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flow was produced in a fixed vessel by external forces, for example by Ampere’s force 
that arises when a radial current passes through conducting fluid in a vertical 
axisymmetric magnetic field B(r) (Dolzhanskii et al. 1990). 

An axisymmetric quasi-two-dimensional flow is produced in either manner and can 
be conveniently represented as the sum of the mean rotation and the shear flow itself: 

w4 = Or + Vu(r), 

where u(r) is specified by the design of the device, and the value of velocity shear V 
can be varied, by varying the difference A52 of angular velocities of different parts of 
the bottom (in the mechanical method), or the parameter controlling the value of an 
external force (current in the case of Ampere’s force). 

Thus, controlling the flow is reduced to varying the Reynolds number which can 
be determined in two ways : either from viscosity, or from Ekman friction (Pedlosky 
1979) : VL V 

V , - L A  
R e = -  and Re --, 

where v is the viscosity coefficient, = O(v/h2)  is the coefficient of Ekman 
friction, L = (max Idu/drl)-’ is the horizontal scale of the shear layer, and h is the 
thickness of the layer of fluid ( h  + h,  = (v /D)f ) .  It is easy to see that their ratio 
p = Re,/Re = O(h2/L2) is also specified by the design of the device and, in the course 
of each experiment, remains fixed. In  the mechanical method of producing the flow, 
L and h are closely related, L / h  = const = O ( l ) ,  and so p = O(1). In flows produced 
by external forces, L and h are independent, and p can be arbitrary ; in most such 
experiments p + 1, which permits us to neglect the viscosity compared with Ekman 
friction. Therefore, Re, (or h = Rell) is a more convenient control parameter. 

The experiments, made under different conditions, have revealed a number of 
common behaviour features of the flows with a change of Re,. If Re, is increased 
adiabatically (very slowly), the axisymmetrical flow becomes unstable when Re, = 
Re,, and a flow with m vortices appears, with m corresponding to the most unstable, 
or fundamental mode of linear theory. The disturbance energy increases pro- 
portionally with the super-criticality (Re, - Re,,), which indicates a soft regime of 
excitation through a Hopf bifurcation (Dolzhanskii et al. 1990). When reaching a 
certain Re, = Reimc, this flow also becomes unstable and a transition to a flow with 
m = m,- 1 vortices (to the mode m, - 1) occurs. With a further increase of Re,,, the 
mode m,-1 is replaced by the mode m,-2, and so on. This is a direct transition 
cascade. If, however, Re, is decreased adiabatically, there is an inverse transition 
cascade of m + m + 1 type. In other words, a flow with m < mc vortices is stable in 
a certain interval ReIm < Re, < Re,+,. When the lower or upper boundary is reached, 
the transitions m +- m + 1 or m + m- 1 ,  respectively, occur. A transition is, usually, 
accomplished abruptly, with hysteresis occurring in the case Re;,,, < Rei9m+l, i.e. 
direct and inverse transitions between the modes m and m f  1 proceed a t  different 
values of Re, (see figure 1).t 

Note two important features observed in all experiments known to us. Firstly, an 

t This is the most frequently occurring scenario. In some flows with p << 1 there is a gradual 
transition m+m+ 1 through a mixed state, or a superposition of two modes. In this case 

<Re,, and when Re, increases from Re:,,,, to Re,, the ‘weight’ of the (m+ 1)  mode 
decreases from 1 to 0, while the ‘weight’ of the mth mode increases from 0 to 1 (Dovzhenko & 
Krymov 1987). In some experiments the results were of probabilistic character : in a direct cascade 
there were either mem- 1 or m+m- 2 transitions, and in an inverse cascade, m+m+ 1 or 
m + m+ 2 transitions occurred, and the probability for either outcome was found to be independent 
of the variation rate of the control parameter Re, (Krymov 1988). 
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FIGURE 1.  Scheme for alternation of the modes in circular shear flows. 

Dashed line shows the neutral curve of linear stability theory. 

adiabatic change of Re, is never accompanied by the excitation of a mode with 
m > m,, although in linear theory m > m, and m < m, are equivalent. Secondly, Reim 
is rather large and, in terms of linear theory, with such Re, values, a whole spectrum 
of modes rather than only the mth and (m-  1)th modes are unstable, including even 
more unstable modes than the mth mode, not to  mention the (m-1)th mode. 
Consequently, the presence of a well-developed mth mode, when Re,, < Re, < Re:m, 
suppresses the development of the other modes. 

These properties indicate that the processes under consideration have a nonlinear 
character and seem to be common to supercritical regimes of development of 
hydrodynamical instabilities of different types. Similar transitions have been 
observed when studying convection, baroclinic instability, Couette flow, etc. Many 
authors use a system of two nonlinearly interacting modes with amplitudes A ,  and 
A ,  as a weakly nonlinear theoretical model of such processes, which is described by 
the equations 

In this approximation p, and p, depend linearly on the control parameter 

and gtt does not depend on A. For definiteness, i t  will be assumed that A, >A,. 
Generally speaking, b,, are complex ; therefore, it is a convenient to proceed in terms 
of 'numbers of quasi-particles ' N, = b,,lA,I2 : 

p1 = a l ( A 1 - 4 ,  P2 = a, (A, -A) ,  

1 a, (A,  - A )  Nl - N :  - b, N,  N,, 
1cW -1 = 
2 dt 

a,(A2 - A )  N, - b, N ,  N,  - N i .  
1cW -2 = 
2 dt 

Here b,, = Re (b"tk),  b, = b12/b22, b, = b,,/b,,,  b,, > 0 ,  b,, > 0. 
6 - 2  
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Since the work by Lotka (1925) and Volterra (1931) on the dynamics of 
populations, equations of types (1.2) and (1.3) have been widely used in different 
branches of science, including hydrodynamical applications (see, for example, Segel 
& Stuart 1962; Drazin 1972; Knobloch & Guckenheimer 1983; Moroz & Holmes 
1984). In the last two quoted papers a detailed analysis is made and bifurcation 
diagrams for these equations are constructed. In the present study we shall attempt 
to ascertain the extent to which the properties of circular shear flows can be 
interpreted in terms of a weakly nonlinear two-mode model, and what these 
properties are. Therefore, following Moroz & Holmes (1984) we shall give a brief 
outline of the results of analysis of (1.3) with applications to our problem (where, in 
particular, b, > 0 and b, > 0). 

The system (1.3) has four different equilibria, although with the given p, atld p2 not 
all of them necessarily exist. These equilibria are: 

CO: N ,  = 0, N, = 0;  exists a t  all p,, p,. This is a stable sink if p,, p, < 0, a saddle 
if p1 > 0 > p,, and an unstable source if p,, p, > 0. 

C1: N, = p,, N ,  = 0;  exists if p, > 0. If b,pl  > p,, this is a stable sink, otherwise it 
is a saddle. 

C2: N ,  = 0, N ,  = p,; exists if p, > 0. If b,p,  > p,, it is a sink, otherwise it is a 
saddle. 

C3 : X, = (p, - b,  p, ) / (  1 - 6 ,  b , ) ,  N ,  = (p, - b, p l ) / (  1 - b ,  b,) ; the existence condition 
is N,, N ,  > 0. If d = 1 -b, b, < 0, i t  is a saddle, otherwise it is a sink. 

Equilibria C1 and C2 are ‘pure’ modes 1 and 2 respectively, and C3 is a mixed 
mode, 1 +2 .  The transition from one state to the other occurs when A takes one of 
the four critical values defined by the relationships : 

I A = A, : 

A = A,: 

A = Acl : 

A = A,, : 

p, = 0, C1 appears (disappears) ; 

pz = 0, C2 appears (disappears); 

p, = b, p,, C1 stability changes ; 

p1 = b, p,, C2 stability changes. and 

It is easy to show that under the transitions from C1, C2 to C3 and vice versa, Nt 
are continuous, and the transitions between C1 and C2 proceed abruptly and are 
accompanied by hysteresis (i.e. the transitions C1+ C2 and C2 +. C1 occur at  different 
values of A) .  According to whether the inequalities 

( 1 . 5 ~ )  

(1 .5b )  
( 1 . 5 ~ )  

are satisfied or not, five different scenarios of evolution, presented in figure 2, are 
possible. For brevity, a corresponding letter denotes that each of the inequalities 
(1.5) is satisfied, and an overbar means that the inequality is not satisfied. For 
example, a& signifies that ( 1 . 5 ~ )  and ( 1 . 5 ~ )  are satisfied and (1.5 b )  is not satisfied. 
The regions where the C 1 4 3  states are stable are represented by heavy solid lines, 
and heavy dashes correspond to their instability region. The evolution with A 
increasing and decreasing is shown by thin dashes with the arrows. 

Based on this analysis we shall consider in $2 some particular models of a circular 
flow and shall determine what evolution scenarios of disturbances are possible in 
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FIGURE 2. Possible variants of the evolution of the system (1.3). 
(a) ubc ; ( b )  a&; (c) abc ; (d) a6F; (e) d c  and &. 

terms of a weakly nonlinear two-modal model. Section 3 is devoted to a discussion 
of the results. Details of the derivation of the evolution equations are given in the 
Appendix. 

2. Formulation of the problem; choice and calculation of the particular 
models 

The diversity of the evolution scenarios admitted by equations (1.3) is 
commensurate with those observed experimentally, but the extent to which they are 
realized depends on the choice of the flow model. All scenarios in which mode 2 is 
excited in a direct cascade (with increasing supercriticality) require that the 
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inequality ( 1 . 5 ~ )  (see figure 2a, b,d) is satisfied; otherwise, only the excitation of 
fundamental mode 1 occurs in terms of (1.3). 

For this reason, the simplest model of a plane shear layer, which is perhaps 
applicable if L < R (R is the radius of the shear layer), is of no interest because ( 1 . 5 ~ )  
is not satisfied in it. Indeed, in this case a disturbance with central wavenumber k is 
described by the nonlinear Schrodinger equation 

a a2h a2$ 
--a(hc-A)$+---+bl$12$ = 0, 
at 2 ak2 ax2 

which, for the superposition of two modes $ = A ,  eiqlz + A ,  eiqzz, is reduced to (1.2), 
(1.3). Since mode 1 is the first unstable one, or is close to it, it  can be assumed that 
k corresponds to a maximum of h(k) ,  and in this case the coefficients b, = b, = 2 and 
a,/a2 = 1 involved in (1.3) are such that only the itbc scenario (figure 2c) is realized, 
in which mode 2 can only be created artificially, outside the scope of the model (1.3). 

Inequalities abc in the model of a plane shear layer are satisfied definitely; 
therefore, the only way that mode 2 can be attained, hence enabling one to 
investigate the transition of one mode to another in terms of the approximation (1.3), 
is if the shear layer curvature is quite substantial, that is, the layer width L is of the 
order of its radius R : D = L / R  = O( 1 ) .  

The flow will be described by two-dimensional incompressible hydrodynamics 
taking into account viscosity as well as Ekman friction. In polar coordinates r and 
d we have 

a 
-V2$+{V2$, at $}+xv"$-$,,) = VV4($-$,,). 

Here $ is the stream function (v, = - r  a$/+, v+ = a$/&), $,,, is the stream function 
of an undisturbed flow, {a,  b} = [Va, Vb],,  v is the viscosity coefficient, and is the 
coefficient of Ekman friction : 

8v/h2 
2v/h2 

for flows under the lid, 
for flows without a lid, 

x =  { 
independently of the way, in which they are produced (it is anticipated that the 
thickness of the fluid layer h is much less than that of the Ekman layer h E ) .  

An undisturbed flow with a cylindrical layer of velocity shear lying a t  a distance 
R from the centre will be specified by the angular velocity profile 

Q ( r )  = $2,+Q2)-$2,-52,)u(r), (2.4) 
where u(0) = - 1 and U ( C O )  = 1, such that 52, and 52, are the respective angular 
velocities of the central part and the periphery. The calculations were carried out 
for the following u profiles : ( a )  u = tanh (y/D) ; (b )  u = 2/n: arctan (n:y/2D) ; and (c) 
u = (217~) arctan ( p  sinhxy/2pD)), where y = In ( r / R ) ,  and D = L / R  is the curvature 
parameter for the shear layer. When choosing the u(y)-profiles we took into 
consideration that (a) is actually a standard model of a shear layer, ( b )  differs from 
it by the slower (power-like) trend of u to f 1 as y + f 00, which proves to be a factor ; 
and finally, family (c) serves as a kind of a bridge between (a )  and (b) ; also, if p = 1,  
profile (c) coincides with that calculated by Rabaud & Couder (1983) for their 
experiment. 

The solution of (2.2) depends, apart from D,  on a further parameter of the device, 
p = Re,/Re, where 

ID, - 52,1R2D 1% -a21 

2DK 
Re = , Re,= 

V 
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FIGURE 3. Neutral curve A = A, for a fixed D (schematically) ; 
curve 1, inviscid case ; curve 2, viscous case. 

are the ‘viscous’ and ‘Ekman’ Reynolds numbers. We shall use A =Re,’ as the 
parameter that controls the disturbance evolution. In order to include flows 
produced both mechanically and by external forces, we investigate the solution of 
the complete equation (2.2) with p = 0(1) and of a shortened equation, with right- 
hand side set to zero (which corresponds to p + 0) ,  referring to these cases as viscous 
and inviscid respectively. The boundary conditions for $ = & - &oo, 

$ =  0, a $ / a r = O  (2.6) 

(the latter only in the viscous case), are imposed on the walls r = r1 and 
r = r2 ( r ,  < R < r 2 )  ; the case rl = 0, r2 = 00 is also studied. 

In terms of weakly nonlinear theory a solution of (2.2), (2.6) is sought in the form 
of an expansion in powers of the small parameter E :  

$ = E$(’) + €2$(2) + E3$(3)  + . . . , (2.7) 
with A - A, = e2Af1) and A -A ,  = s2A;), where 1 and m are the azimuth mode numbers, 
whose interaction is examined. For a given D, the number of modes is limited by the 
condition mD 5 1 such that mmax = O(D-l). Linear theory gives the stability 
boundary A = A,, the growth rate y, = a,&-A), the frequency 

w(n)  = ~(s2,+52,)-a,(sZ1-sZ2) (2.8) 

and the eigenfunction gn of each mode. 
A typical plot of the n dependence of A on m is presented in figure 3. A maximum 

value is reached when m = m, - $max. The value of a, depends weakly on m (see 
tables 1-3 and figure 4 b ;  cf. Rabaud & Couder 1983; Chomaz et al. 1988), and so the 
spectrum (2.3) seems to be non-decaying, i.e. there do not exist m, m,, and m2 such 
that the relationships 

m = m1 +m2, w(m) = w(ml) +w(m2) 

are satisfied simultaneously. Therefore, the evolution equations contain a cubic 
(rather than quadratic) nonlinearity and, in the two-mode approach, have the form 
(cf. (1.2)) : 

1 -- , - a, (A, - A )  A 1 - it, IA ,12A , - b”,, IA , 12A , . dA 
dt 

(2.9) 
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(When comparing (2.9) with (1.2) and applying ( 1 4 ,  it should be kept in mind that 
a mode with a larger value of A, corresponds to index 1.) The procedure for deriving 
(2.9) is a standard one ; details are given in the Appendix. 

In terms of weakly nonlinear theory one can only consider the interaction of a pair 
of modes for which A, - A, = O(s2). In the case of not too large m, this condition can 
be satisfied only with a suitable choice of D and only for the mode rn, and for those 
closest to it. Taking this into account, we take two neighbouring modes ( I  = m+ 1) 
as the pair I and m and for them find D = D, such that A, = A,; in this case 
A, = max,(A,) automatically. Such a choice severely relates D to m : D, m = const, 
so that a growth of m means a proportional decrease of the curvature parameter D. 
The necessary difference between A, and A, is attained by a small variation of D: 
positive (SD = D-D, > 0) in the case A, < A, and negative (6D < 0) if A, > A,. 
Taking 6D into account (and, equivalently, taking into account the differences 
between A, A, and A,) when calculating the coefficients a, and Ltk involved in (2.9), 
would be to exceed the accuracy. Results of the calculations are presented in tables 
1-3 and in figures 4 and 5. 

3. Results 
3.1. Inviscid flows (p  4 1 ; rl = 0, r2 =a). 

In the inviscid case, as is easy to see from (2.2), yn = A,-A such that all a, = 1 and 
the inequalities (1.5a), (1.5b) are reduced to comparing b, = b,,/b,, and b, = bml/b,, 
with unity (btk = Re &)). Table 1 gives the results for velocity profiles (a) 
u = tanh (y/D), (b)  u = 2/n arctan (p'sinh ny/2ltD), p = 1, and table 2 lists those for 
profiles. (c) u = (2/n)arctan (nylw)), (d )  u = (2/x)arctan @.sinhzy/2pD), p = 10 
which differ by a slower (power-like rather than exponential) trend of u to 
asymptotic values & 1.7 It is interesting to note that at  the same m the shear layer 
in flows (c) and ( d )  has a larger width, and consequently, a larger curvature D.  
Figure 4 shows dispersion properties of flow model ( a )  for two values of D. 

For each of flows (u)-(d), the inequalities 

b, < 1 < b, (3.1) 

are satisfied (and for the first pair, m = 2, even b, 4 1 4 b, are satisfied), which are 
equivalent to (1.5a), (1.5b) if a mode with a larger azimuthal number is taken as 
mode 1 (i.e. to make m, = I = m+ 1, which requires 6D = D-D, < 0). This means 
that in each of these pairs, (2.9) admits transitions between the modes, and a direct 
cascade (transitions in the case of an increase in supercriticality) proceeds with 
decreasing m, and an inverse cascade is accompanied by an increase of m. 

The inequality ( 1 . 5 ~ )  ceases to be satisfied only at  the largest values of the 
curvature parameter D,(m = 2 in table 2). In this case both the direct and the 
inverse transitions proceed smoothly, through mixed state C3, with a gradual 
substitution of one mode by the other (figure 2 b) .  In the other cases (m = 2 , 3  in table 
1 and m = 3,4 in table 2), ( 1 . 5 ~ )  is satisfied, and the transition m+ 1 S m proceeds 
abruptly and is, moreover, accompanied by hysteresis (figure 2a). 

If, however, the mode m is taken as mode 1 (mc = m, 6D > 0 ) ,  for the above first 
pairs we than have the scenario &c or dk where the second mode is not excited at 

t In flow ( d ) ,  only the intermediate asymptotic representation ( 1  < ny/2D < p )  has a power-like 
character. 
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m, 1 
pairs 

2, 3 

3, 4 

4, 5 

5, 6 

6, 7 

10, 11 

50, 51 

u = tanh (y/D) 

D m  

A m  

0.2015 
0.1607 

0.1350 
0.1767 

0.1025 
0.1822 

0.0828 
0.1848 

0.0696 
0.1862 

0.0427 
0.1886 

0.0088 
0.1896 

a m  
a1 

0.4732 
0.4745 

0.4723 
0.4725 

0.4717 
0.4719 

0.4715 
0.4716 

0.4714 
0.4714 

0.4712 
0.47 12 

0.471 1 
0.471 1 

b7n 
bI 

0.339 
7.434 

0.859 
4.61 1 

1.162 
3.487 

1.352 
2.963 

1.479 
2.685 

1.720 
2.298 

1.952 
2.048 

d 

-1.521 

-2.960 

-3.051 

-3.007 

-2.972 

-2.951 

-2.997 

u = ( 2 1 ~ )  arctan (psinh rry/2pD), 
p = l  

D m  

Am 

0.2086 
0.1571 

0.1394 
0.1741 

0.1057 
0.1800 

0.0854 
0.1828 

0.0091 
0.1879 

a m  

&I 

0.4585 
0.4476 

0.4560 
0.4487 

0.4550 
0.4493 

0.4543 
0.4498 

0.4521 
0.4517 

bm 
bI d 

0.226 -0.953 
8.625 

0.762 -2.900 
5.117 

1.086 -3.085 
3.760 

1.300 -3.060 
3.130 

1.950 -3.00 
2.050 

TABLE I .  Results of calculations for inviscid flows for various values of m, 1 for 
two different velocity profiles. 

m, 1 
pairs 

2, 3 

3, 4 

4, 5 

5 ,  6 

6, 7 

9, 10 

50. 51 

u = (2/n)arctan (psinhrry/2pD), 
p = 10 u = ( 2 1 ~ )  arctan (xy/W) 

Dm a m  bm Dm a m  bnl 
Am a1 b, d A m  a1 4 d 

0.2730 0.3608 0.0473 0.501 0.2722 0.3619 0.0453 0.522 
0.1476 0.3339 10.56 0.1474 0.3348 10.57 

0.1683 0.3406 5.87 0.1682 0.3417 5.88 

0.1752 0.3438 4.21 0.1751 0.3449 4.21 

0.1784 0.3455 3.43 0.1783 0.3468 3.43 

0.9095 0.3559 1.37 -3.10 
0.1801 0.3467 3.00 

0.1823 0.3486 2.46 

0.1842 0.3514 2.04 

0.1785 0.3584 0.616 -2.62 0.1778 0.3598 0.618 -2.63 

0.1342 0.3573 0.972 -3.09 0.1337 0.3587 0.971 -3.084 

0.1080 0.3565 1.20 -3.13 0.1076 0.3579 1.20 -3.13 

0.0612 0.3548 1.63 -3.013 

0.0114 0.3526 1.96 -2.997 

TABLE 2. As table 1 for two further velocity profiles. 

all (figure 2e). Thus, whenever (2.9) admits transitions between the modes, they 
occur only in the region m Q m,, in total agreement with experiment. 

At  larger m the inequalities (3.1) are replaced by the inequalities 

1 < b,  < 2 < b,+l, (3.2) 
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1 2 3 4 5 6 7  

. .  

a m  
0.48 

0.47 
1 2 3 4 5 6 7  

m 
FIQURE 4. Dispersion properties of the flow model ,u = tanh (y/D) for 

two values of the parameter of curvature D(h = h(2D)-'). 

i 

L 

2 4 6  810 20 30 40 
m 

FIQURE 5. Coefficients of self-action and interactions of two adjacent modes for the 
model u = tanh (y/D). 

which admit the only scenario abc (figure 2c)  as in the case of a plane shear layer. It 
is interesting to note that the transition b through 1 proceeds in different models with 
about the same D (though with different m),  which, we believe, emphasizes the 
decisive influence of the shear-layer curvature upon the evolution scenarios of 
disturbances. 

The dependence of the coefficients b,, on m has a characteristic form and, for 
u = tanh(y/D), is plotted in figure 5 ,  showing that when D+O (m+m), b,, = b,,, 
b,, = b,, and b,,/b,, = b, = b, = 2. In  this limit the phase velocity of a disturb- 
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u = tanh ( y / D )  

d 
m, 1 Dm a m  am b m  Lan 
pairs A m  a, a, b, b, 
2, 3 0.16008 0.5483 1.262 1.069 1.218 -2.682 

0.1149 0.5616 1.438 3.443 3.022 

0.1214 0.5614 1.395 3.018 2.775 
3, 4 0.1064 0.5538 1.283 1.376 1.497 -3.153 

u = ( 2 / ~ )  arctan ( x y / W )  

2, 3 0.1665 0.4758 1.276 0.951 1.143 - 2.468 
0.09654 0.4685 1.534 3.647 3.033 

TABLE 3. Results yf calculations for piscous flows for two different velocity profiles; 
for 6, = a,bm/a, and b, = a,b,/a,, see (1.5a) and (1.5b). 

ance w(rn)/m+f(S2, +a2) and A, as a function of m looks like that shown in figure 3, 
and near the neutral curve maximum the approximation 

A = A, = Amax-pD2(m-mC)2 

holds, where A,,, = 0.19, p = 3.1, and m, = 0.45/0. This agrees with the dependence 
of growth rate y on wavenumber k obtained by Michalke (1964) for a plane layer, in 
view of the correspondence y + A,, k + mD. 

3.2. Viscous flows (p = O(1)) 

The results of calculations for viscous flows without walls 

( r l  = 0, r2 = oc)) u = tanh (y/D) and u = (2/x) arctan (xy/2D) 

are presented in table 3. In  the calculations we took p = 0.5. This corresponds to 
choosing L = fh for a flow under the lid and to L = h for a flow without a lid (see (2.3) 
and (2.5)). The first thing that attracts attention is the substantial difference of the 
dispersion properties from the inviscid flows properties: at the same m the value of 
D,  in a viscous flow is significantly smaller (see figure 3). As a consequence of this, 
in both models the inequality ( 1 . 5 ~ )  is not satisfied at any m, and the only possible 
scenario is Zbc (figure 2c) .  

This conclusion is not altered if the sidewalls ( r l  and r2 are finite) are taken into 
account. A calculation has shown that (1 .54,  even for the first pair of modes (m = 2 ) ,  
can be satisfied only when they are very close to the shear layer (Ir,-RI/R 5 30) 
when the flow can no longer be considered two-dimensional. 

3.3. Discussion 
From the above analysis it is evident that the two-mode approach (1.3) is only 
suitable for describing transitions between modes with close stability thresholds 
(A,-A, = O(e2)) in flows with sufficiently large curvature D of the shear layer for a 
sufficiently small supercriticality (A -A ,  = O(e2)). In this region of parameters the 
model is self-consistent because the admissible m is so small that even for modes 
neighbouring 1 and m we have IA,-A,I & e2 (see figure 4a) ,  and the behaviour it 
predicts (all transitions occur only when m < m, with hysteresis or through a mixed 
state) also roughly agrees with that observed experimentally. Unfortunately, 
however, the region itself is extremely narrow in the inviscid case and disappears 
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altogether in the viscous case (when p = 0.5) .  This may be why there are no 
experimental data pertaining to it directly (they are unknown to these authors, a t  
least). It has been customary to investigate flows with D < 0.1 (m = 5-10 or more), 
for which the two-mode model gives only the scenario abc, allowing only for 
transitions with decreasing Re, which make m approach m, (‘lower ’ transitions, see 
figures 1 and 2 c ) .  The point here is that the two-mode model (1.3) is tenable only in 
the case of small supercriticality, i.e. in a narrow (in Re,) band near the neutral curve, 
and is unable to describe, at such small D values, the ‘upper’ transitions (m+m- 1 
with increasing Re,) which proceed, as is evident from experiment, at large 
supercriticality (Reim -Re,, = O(Re,,)). For a correct description of the ‘upper’ 
transitions (direct cascade), it is necessary to include additional interactions, and 
experiment shows what they are. For example, Chomaz et al. (1988) found that in the 
case of even m the ‘upper’ transition is preceded by the excitation of a subharmonic 
(*), and in the case of odd m it is preceded by the temporal mode. 

The lower transitions are, we believe, quite well described in terms of weakly 
nonlinear theory, a t  least, a t  Im-m,l not too large. 

We are grateful to Drs M. V. Nezlin and D. Yu. Manin for their stimulating 
interest in this work, and to the anonymous referees who pointed out the papers by 
Knobloch & Guckenheimer (1983) and Moroz & Holmes (1984). Thanks are also due 
to Mr V. G. Mikhalkovsky for his assistance in preparing the English version of the 
manuscript and for typing and retyping the text. 

Appendix. The derivation of evolution equations (2.9) 
If all variables are made dimensionless with the linear scale R and timescale 

T = 2D/( f2 , -Q2) ,  equation ( 2 . 2 )  for the flow (2 .4)  yields 

where 

and the prime denotes the derivative in y. Equation (A 1 )  in the inviscid (p  = v” = 0) 
and viscous (p  = 0.5) cases was solved with the boundary conditions (2 .6 )  on an 
unbounded ( -  00 < y < co) interval and in the viscous case also on a bounded 
(yl < y < y2) interval with the help of the expansion ( 2 . 7 ) .  

A. 1 .  The linear approximation : O(s)  

Since we are concerned with the interaction of two (generally speaking) equivalent 
modes, then 

$ ( l )  = A1(7) g,(y) eiz+iw(l)t +Am(7)  g,(y) eim+iw(m)t +c.c. ; 7 = e2t. 

The function g n  satisfies, in the inviscid case, the second-order equation 
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and in the viscous case the fourth-order equation 

Z:)g, = 2(2-n2)+fi(u+22)etY]$ 2; 

2; 

where u, = wn+iAn, w, = w(n)-n/2(SZ,+SZR,), n = 1,m. 

At a given D each of (A 2) and (A 3) with corresponding boundary conditions is an 
eigenvalue problem whose solution determines w ,  and A,. Note that while in (A2) 
these numbers are involved only as a common complex number u,, in (A 3) A,  is also 
involved in 5. The problem is solved for n = m and n = I = m+ 1 to  find D = D ,  such 
that A, = A,, and all subsequent calculations are performed with these D, and A,. 
When calculating nonlinear terms, i t  is also convenient to  use, along with g,, the 

Also, since the operator 2':) is not a self-conjugate one we shall need the 
eigenfunctions f, and f, of the problem conjugate to  (A 3). 

A. 2. The quadratic approximation : O(e2) 

The function of the second approximation 

@(2) = (A,(2gOl + (Am(2g,, + {A,2g2, e2i1#-2'w(l)t + A h  g2, e2im@-2'w(m)t 

+AlAm 9 8  ei(l+m)~-iw(l)t-lw(m)t + A  1 A- m g 8  ei(l-m)#-iw(l)t+iw(m)t + C.C.} 

involves, along with the mean flow disturbance (through the zero harmonic), the 
second harmonics of each of the modes, and the sum (g8) and difference (98) harmonics 
(the bar denotes complex conjugation). 

All harmonics, except the zero harmonic, are calculated in the same fashion. The 
equation 

9 L 2 ) g ,  = R,/(u,+&u) 

is solved in the inviscid case, or 

Z :) g, = iR, e2"/v" 

n = 2m, 21; s = l + m ;  6 = l-m; 

c2, = 2w, + iA, 

in the viscous case, where 

c2, = 2w, + ih, gE = w1 + w, + iA,  u8 = w1 -0, + iA,  

R2m =m(PmgL-P:,gm); R21= E ( P , g ; - - P ; g , ) ;  

RE = l(P, gL--Pm 91) +m(Pm g;-PI gm) ; 

R8 = l(P, s', -pm g l )  - m(Pm g; -PI 9,). 

Zeroth harmonics in the inviscid case are obtained immediately in explicit form : 

in 
g;, = -h (Pn gn -pn gn), = 1, m, 
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and in the viscous case as the solution of the equation 

n = 1, m, 

with the conditions gon = 0 and gkn = 0 on the boundaries. For subsequent 
calculations, we shall need, as well as g i ,  also specified by (A4).  

A. 3. The cubic approximation : O(c3) 
In  this order we are interested only in corrections to the lth and mth harmonics 
caused by the non-stationarity, the difference between A,&,  and Am, and by the 
nonlinearity 

I n  the inviscid case 
p 3 )  = ~ j 3 )  + $g). 

and in the viscous case 

and similarly for the mth mode ; we shall not give the explicit expressions for R,, here 
because they are too unwieldy. By multiplying each of the equations obtained by the 
eigenfunction of the corresponding conjugate problem and integrating, we obtain the 
evolution equation (2.9). 
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